1,380 research outputs found

    An alternative fit to Belle mass spectra for DD, D*D* and Lambda_C Lambda_c

    Full text link
    Peaks observed by Belle in DD at 3.878 GeV and in D*D* at 4.156 GeV may be fitted by phase space multiplied by a form factor with an RMS radius of interaction 0.63 fm. The peak observed in Lambda_C Lambda_C at 4.63 GeV may be explained by Y(4660), multiplied by a corresponding form factor with RMS radius 0.94 fm.Comment: 3 pages, 1 figures Shorted version, conclusions unchange

    Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    Get PDF
    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS (Abaqus unified FEA, 2016) [1], with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress [2]. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law [3] with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. The relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures

    ATP Reception and Chemosensory Adaptation in \u3c/i\u3eTetrahymena thermophila\u3c/i\u3e

    Get PDF
    Micromolar concentrations of adenosine triphosphate (ATP) and its non-hydrolyzable analog β- γ -methylene ATP are both effective depolarizing chemorepellents in Tetrahymena thermophila. Chemorepellent behavior consists of repeated bouts of backward swimming (avoidance reactions) that can easily be quantified to provide a convenient bioassay for purinergic reception studies. Chemosensory adaptation occurs following prolonged exposure (10 min) to the repellents, and cells regain normal swimming behavior. Adaptation is specific since cells that are behaviorally adapted to either ATP or β- γ -methylene ATP still retain full responsiveness to the chemorepellents GTP and lysozyme. However, cross adaptation occurs between ATP and β- γ -methylene ATP, suggesting that they involve the same receptor. Behavioral sensitivity to both ATP and β- γ -methylene ATP is increased by the addition of Na+, but addition of either Ca2+ or Mg2+ dramatically decreases the response to ATP. These ionic effects are correlated with in vivo ATP hydrolysis, suggesting that divalent ions decrease purinergic sensitivity by activating a Ca2+- or Mg2+-dependent ecto-ATPase to hydrolyze the ATP signal. In vivo [32P]ATP binding studies and Scatchard analysis suggest that the behavioral adaptation is due to a decrease in the number of surface binding sites, as represented by decreased Bmax values. All these changes are reversible (de-adaptation) after 12 min in a repellent-free buffer. Electrophysiological analysis showed that both β- γ -methylene ATP (10 micromol l-1) and ATP (500 micromol l-1) elicited sustained, reversible depolarizations while GTP (10 micromol l-1) produced a transient depolarization, suggesting that the chemosensory response pathways for ATP and GTP reception may differ. There may be separate ATP and GTP receptors since ATP and GTP responses do not cross-adapt and ‘cold’ (unlabeled) GTP is not a good inhibitor of [32P]ATP binding. These results suggests that T. thermophila possess high-affinity surface receptors for ATP that are down-regulated during chemosensory adaptation. These ATP receptors may act as chemorepellent receptors to enable T. thermophila to recognize recently lysed cells and avoid a possibly deleterious situation. This is the simplest eukaryotic organism to show an electrophysiological response to external ATP

    Adverse infusion reactions to rituximab in systemic lupus erythematosus: a retrospective analysis

    Get PDF
    Background To undertake a retrospective review of patients with SLE who had received Rituximab in order to determine the rates and associated patient characteristics of clinically significant adverse infusion reactions. Methods A descriptive analysis was undertaken of each infusion reaction, which was then assessed using the clinical information available to hypothesise on the possible underlying mechanism(s). Results Records of 136 SLE patients previously treated with 481 individual infusions of Rituximab were reviewed. A total of 22 patients (17.6%) had 28 (5.8% of total infusions) documented clinically significant adverse infusion reactions. Average age at first Rituximab infusion in patients without a reaction was 37 years (range 16–73) compared with 30 years (range 18–56) in those with a reaction. A high proportion of men (18.2%) experienced an infusion reaction. Severity and type of reaction varied. 6.4% of those who had a reaction were not retreated. Conclusions While Rituximab remains an important tool in the treatment of SLE it is important to be aware that rates of infusion reactions may be more significant in SLE than in other diseases. A prospective study is required to better characterise the reactions
    corecore